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What is Lunar In-Situ Resource Utilization (ISRU)?

ISRU involves any hardware or operation that harnesses and utilizes ‘in-situ’
resources to create products and services for robotic and human exploration

In-Situ Lunar Resources
 ‘Natural’ Lunar Resources
 Discarded Materials
Lunar ISRU Products and Services
 Excavation, Site Preparation, and Outpost Deployment/Emplacement
 Mission Consumable Production
 Outpost Growth and Self-Sufficiency
Benefits of ISRU
 Increased science and exploration hardware (instead of consumables)
 Increased safety, crew exploration time, and self-sufficiency
 Technology spin-in/spin-offs help recycling on Earth & space economy
Potential Missions Include:

Precursor Ground
Truth Missions

Outpost Site
Preparations

Precursor Oxygen Extraction
from Regolith Missions

Outpost Oxygen
Extraction from Regolith
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Consumable Production for Lunar Outpost

 Oxygen (O2) Production from Regolith
– 1 MT/yr production rate for ECLSS/EVA closure
– 0.9 MT/yr to make water for ECLSS/EVA closure with lander propellant scavenging
– 10 MT/yr production rate during Outpost operation would also support refueling 2 ascent vehicles

per year to further increase payload delivery capability
– Options include:  Hydrogen reduction (1 to 5% kg O2/kg bulk regolith), Methane Carbothermal

reduction (10 to 28%), and Molten electrolysis (up to 40%)

 In-Situ Water Production
– 1 MT/yr water needed for life support/EVA closure
– ~3 MT water needed habitat radiation shielding (3 habitats of 1000 kg each)
– ~225 kg water needed for each Small Pressurized Rover thermal/radiation system
– Options include:

• Scavenge hydrogen from each LSAM descent stage after landing and add to in-situ oxygen to
make 1 MT/yr of water (40 to 60 kg of H2 remains after all O2 is consumed to make water)

• Post-ECLSS crew waste/plastic trash processing to complete extraction of water
• Polar water/ice extraction and processing only needed if large scale in-situ propellant

production is used incorporated into the architecture

 In-Situ Methane Production
– ~2100 kg/yr supports refueling 2 ascent vehicles per year.
– Capability can be used to initially supports LSAM Ascent ‘top-off’ in case of leakage, power loss, or

increased payload to orbit before completely refueling ascent vehicle
– Options include:

• Utilize methane produced by habitat life support system (400-500 kg/yr for crew of 4)
• Process plastic trash and crew waste with in-situ oxygen to make methane
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Lunar Regolith Processing
Options Under Consideration

 O2

Methane Reformer

Reduction Furnace

Water electrolysis

 2MgO
 FeTiO 3  

 2CO + 4H 2 + Mg2SiO 4  
 MgSiO 3  

+ 2CH4

2TiO 2 

Si +

2Fe +

MgO

 2CO +  6H 2

1625°C

2H 2O +  2CH 4
250°C

 2H 2  +   O2    2H 2O 25°C

Molten
Electrolysis

Hydrogen Reduction
of Ilmenite/glass
Process

Methane Reduction
(Carbothermal)
Process

Ilmenite - 15%
FeO•TiO2 98.5%

Anorthite - 20%
CaO•Al2O3•SiO2 97.7%

Olivine - 15%
2MgO•SiO2 56.6%
2FeO•SiO2 42.7%

Pyroxene - 50%
CaO•SiO2 36.7%
MgO•SiO2 29.2%
FeO•SiO2 17.6%
Al2O3•SiO2 9.6%
TiO2•SiO2 6.9%

Lunar Mare Regolith
 O2

Fluidized Bed Reactor

Water electrolysis
 2FeTiO3 + 2H2 2H2O+2Fe + 2TiO2

900°C

O2   +   2H2  2H2O

Molten Electrolysis Reactor

SiO 2 
FeTiO 3  
FeO   

Si + 1/2 O 2
Fe + TiO 2 + 1/2 O 2
Fe + 1/2 O 2

3/2 O2

Solar Wind & Polar Ice/H2
Hydrogen (H2)
Helium (He)
Helium-3 (3He)
Carbon (C)
Polar Hydrogen H2O/H2

50 - 150 ppm
3 - 50 ppm
10-2 ppm
100 - 150 ppm
1 - 10%

Volatile Extraction
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ISRU Excavation & Oxygen Production Examples & Analogies

Volume equivalent
to 1 Metric Ton of

lunar regolith

0.85 m

0.85 m

  0.85 m

10 MT of oxygen per year
requires a regolith excavation rate of
~4 cups per minute!

300 MT of oxygen per year requires
a regolith excavation rate of
~10 cups per minute!
(14% efficiency - 70% time-polar region)

110 m

65 m

10 MT of oxygen per year
requires excavation of a soccer
field to a depth of 0.6 to 8 cm!
(1% & 14% efficiencies)

(worst case)

 Excavation rates required for 10 MT O2/yr production range based on extraction efficiency
of process selected and location

– Hydrogen reduction at poles (~1% extraction efficiency): 150 kg/hr
– Carbothermal reduction (~14% extraction efficiency): 12 kg/hr
– Electrowinning (up to 40%):  4 kg/hr

 Laboratory tests showed high excavation rates of                                                            150
to 250 kg/hr for small bucket wheeled vehicle (<150 kg)

CRATOS
rover at GRC

IR&D rover
at LMA

Bucketwheel
at NORCAT

 Oxygen Processing Reactors are not large, even for
1% efficient systems (H2 Reduction at poles with no beneficiation)

– Module sized for 670 kg O2 per year
– Each reactor processes 10 kg/batch of regolith
– Each reactor is 30” L x 8” D (76 cm x 20 cm) H2 Reduction

reactor at JSC

<1m

1 MT of oxygen per year requires an
excavation rate of <1/2 cups per minute!
(1% efficiency - 70% light)
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ISRU Development Strategy

 Develop ISRU Technology and Systems in 4 Phases (2-4 years each phase)
– Phase I:  Demonstrate Feasibility
– Phase II:  Evolve System w/ Improved Technologies
– Phase III:  Test and Modify for Lunar Environment Applicability (1/6-g, vacuum, etc.)
– Phase IV:  Develop 1 or more systems to TRL 6 Before Start of Flight development

 Coordinate development of ISRU Technologies and Systems with Other Surface
Elements
– Identify common requirements, processes, hardware, and operations
– Coordinate development of hardware to align Project schedule & milestones

 Utilize laboratory and analog site demonstrations to:
 Demonstrate needed capabilities and operations for Lunar Outpost and

technology/system ‘customers’
 Demonstrate evolution and incremental growth in technologies and systems for

Capabilities (ex. digging deeper); Performance (ex. lower power); and Duration (ex.
more autonomy or more robustness).

 Perform joint hardware and operation tests with other Surface Element Projects
 Develop partnerships and relationships across NASA and other US government

agencies, and with International Partners, Industry, and Academia

 Be prepared to participate in robotic precursor missions should opportunity arise
– Site characterization and resource mapping
– Subscale ISRU demonstrations for subsequent mission risk reduction
– Outpost ‘dress rehearsal’ mission
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Why Perform Analog Field Tests?

Concrete Benefits of Field/Analog Testing
 Mature Technology

 Evaluate Lunar Architecture Concepts Under Applicable Conditions

 Evaluate Operations & Procedures

 Integrate and Test Hardware

Intrinsic Benefits of Field/Analog Testing
 Develop Partnerships

 Develop Teams and Trust Early

 Develop Data Exchange & Interactions with International Partners

 Outreach and Public Education
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ISRU Analog and Field Test Site Requirements

 Minimum vegetation

 ‘Good’ Weather
– Minimum rain and wind
– Lots of sunlight
– Reasonable temperatures (unless specifically needed for test objectives)

 Open and relatively flat areas for ‘Outpost-like’ operations

 Varied terrain and rock features for resource prospecting and science
operations

 Local material with similar physical characteristics to the Moon for
excavation and site preparation

 Local material with similar mineral characteristics to the Moon for
resource prospecting, oxygen extraction, and processing

 Local material that can be modified, processed, and permanently altered
for site preparation and construction
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Why an ISRU Field Demo?
 Demonstrates lunar ISRU feasibility for Outpost needs at relevant Outpost scale

operations.
 It forces design decisions to be made and gets hardware out of the laboratory
 Initiates integration of ISRU with other NASA Technology Projects and Science Mission

Directorate for requirements, schedules, hardware, and operations
– Begin standardizing interfaces, connections, and modular units

 Initiates opportunity for collaborations with International Space Agencies in non-flight
situation (CSA, JAXA, DLR) and  allows data and ITAR issues to be worked

 Builds teams and trust which will be important when actual flight hardware and
development issues arise in the future

Why A Volcanic Site in Hawaii?
 Terrain, rock distribution, and material/soil provides good simulation for lunar polar

region, and tests hardware and operations beyond ability of laboratory and ‘rock yards’
– Apollo field testing “deemed most relevant site” by Astronauts

 Infrastructure is very close to site of testing minimizing time wasted
 PISCES is ‘hosting’ ISRU field test.  Performing all work on permits and establishing site,

arranging food/lodging, providing hardware assembly and checkout facilities, providing
site infrastructure and support (tents, toilets, food, etc.)

 State of Hawaii and Innovative Partnership Program (IPP) are providing funding to
significantly reduce cost

 Central location for US, Canada, and Japan to partner and ship hardware

Why Perform an ISRU Field Demo?  Why Hawaii?
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Key Field Test Personnel
– Jerry Sanders & Bill Larson ISRU PM – Rob Ambrose HRS PM
– Tom Simon, OPTIMA lead                     – Jackie Quinn, RESOLVE lead
– Frank Schowengert, PISCES                – Michel Doyon, CSA

Field Test Objectives
1. Mobile Resource Characterization & Oxygen Demonstration (RESOLVE/Scarab)

• Demonstrate resource prospecting, site surveying, and oxygen production
• Demonstrate hardware integration and mobile surface operations
• Opportunistic Demos: Hand-held Raman spectrometer (CSA);  Mossbauer

spectrometer (JSC) on Cratos rover;  CHEMIN XRD/XRF (ARC/LANL)
2. OPTIMA (ISRU End-to End Outpost Scale Oxygen Production & Storage Field Test)

• Demonstrate excavation and regolith delivery to ISRU plant
• Demonstrate oxygen extraction from regolith at outpost production rate
• Demonstrate system integration, modularity of modules for swapping, and surface

operations
• Opportunistic Demo:  Cryogenic oxygen/methane storage, feed, and thruster firing

3. Demonstrate partnership with State of Hawaii and Pacific International Space
Center for Exploration Systems (PISCES)

Customers
– CxPO Lunar Surface Systems Office
– SMD, OSEWG, and ESMD Lunar Scientist
– NASA ESMD Advanced Capabilities & Directorate Integration Office
– NASA Office of External Relations

ISRU Field Test – Hawaii 2008
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ISRU Field Test Hardware for Nov. 2008

RESOLVE/Scarab Rover

Bucket Drum
Excavator
(IR&D)

Rotating H2 Reduction
Reactor - 17 kg/batch

Lift System and
Auger Loading

Lander Simulator (IR&D)

Product Processor

Oxygen Liquefier/
Storage (IR&D)

Water
Condenser

Salt Extraction
Collector and
Second Stage
Filter

Hydrogen Storage

Dump
Chute

LMA PILOT H2 Reduction System

NASA ROxygen H2 Reduction System

Two Fluidized H2 Reduction
Reactors - 10 kg/batch each

Water Electrolysis
Module

Gaseous O2
Storage

Cratos Excavator

RESOLVE
Processing Module

RESOLVE Drill
(NORCAT)

NASA Cryo O2/CH4 Storage-
Feed System & 25 lbf

thruster/igniter (Optional Test)

TriDAR Navigation
Sensor (Neptec) Note:  PILOT and

ROxygen modules can
be swapped for

different operations
and configurations

Regolith
hopper/auger lift
system
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Education and Public Outreach

 Public Outreach
– NASA will provide presentations in the Center’s

Auditoriums on America’s return to the moon.
– Demonstration of NASA’s robotic excavation vehicles will

be scheduled at the ‘Imiloa Astronomy Center in Hilo
– Students will be given an opportunity to operate the

rovers

 Education Outreach
– NASA personnel plan to visit several schools during out field test

campaign.
– Presentations focus on NASA’s return to the moon and learning to

live off the land.
• Need for Math and Science Education will be emphasized

CRATOS Drawbar Pull Test
Scarab with Canadian Tridar
Navigation System

Lockheed Martin
Bucket Wheel  Excavator
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Backup Slides

Experiment Details and Objectives
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Mobile Resource Characterization and
Oxygen Production Demonstration
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 Demonstrate resource prospecting, site surveying, and oxygen production
demonstration activities

– Demonstrate Scarab rover carrying RESOLVE and TriDAR camera to multiple locations
over varying terrain

– Demonstrate dark navigation
– Perform sample acquisition, transfer, metering, and sample evaluation
– Perform RESOLVE resource prospecting operations (drilling, crushing, volatile

extraction, and capture) at multiple locations – 1 minimum, 3 nominal, 5 maximum
– Demonstrate remote drill site selection (Neptec TriDAR camera) and RESOLVE drill

operation from CSA.

 Demonstrate hardware integration and mobile surface operations
– Integration of complete RESOLVE unit onto Scarab rover
– Integration of TriDAR camera onto Scarab rover
– Build relationships and interactions with other NASA projects, industry, academia,

international partners, and SMD

 Opportunistic Demos:
– Evaluate incorporation of data from other science instruments with RESOLVE and

TriDAR through SMD Moon and Mars Analog Mission Activity (MMAMA) and Canadian
Space Agency (CSA)

• Raman spectrometer (CSA)
• Mossbauer spectrometer on Cratos rover to evaluate material before/after processing
• Mini-CHEMIN XRD/XRF (hand carried) to evaluate material after processing (MMAMA)

Mobile Resource Prospecting & Oxygen
Production Objectives
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Mobile Resource Prospecting & Oxygen
Production (RESOLVE/Scarab) Tasks

 Demonstrate roving over multiple terrain features with complete RESOLVE-
science payload

 Demonstrate dark navigation of Scarab over varied terrain and rock distribution

 Demonstrate drill site selection using TriDAR and Raman spectrometer via
remote analysis at CSA PTOC

 Demonstrate remote operation of drill and sample transfer operations at CSA
PTOC

 Demonstrate end-to-end operation of RESOLVE package
– Min. of two times for resource prospecting:  drilling, sample transfer, crushing, heating,

volatile characterization;  Max. 5 times
– Min. of one time for oxygen extraction from regolith;  Max. 3 times
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Mobile Resource Characterization & Oxygen
Demonstration Hardware

RESOLVE Processing
Module

Scarab Rover
(CMU – HRS)

TriDAR Navigation &
Drill Site Selection
Sensor (Neptec)

RESOLVE Drill &
Sample Transfer

(NORCAT)

Advanced Stirling
Radioisotope

Generator
Simulator (GRC)

Gas Chromatograph Reactor & Valving

Interface panel with Ground
Support Equipment

Neon
Tank

Hydrogen
Tank

Water Capacitance
Beds

Hydrogen
Capture Bed
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OPTIMA:  Outpost Precursor Testbed
for ISRU & Modular Architecture
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OPTIMA - Outpost Scale Oxygen Production & Storage
Objectives

 Demonstrate excavation and regolith delivery to/from ISRU plant
– LMA Bucketwheel rover (IR&D)
– NASA Cratos rover

 Demonstrate oxygen extraction from regolith at outpost production rate
– NASA ROxygen fluidized bed + auger hydrogen reduction reactor makes oxygen at

~660 kg/year (2/3 scale for Outpost)
– LMA PILOT rotating hydrogen reduction reactor makes oxygen at 250 kg/year (1/4 scale

for Outpost)

 Demonstrate oxygen storage
– LMA liquefaction and storage with cryocooler and vacuum-jacketed tank (IR&D)
– NASA moderate pressure gas storage

 Demonstrate system integration, modularity of modules for swapping, and
surface operations

– Demonstrate feasibility of end-to-end oxygen extraction from regolith
– Demonstrate open architecture and modular approach with standardized interfaces

between modules
– Integrate hardware from different projects and industry
– Build relationships and interactions with other projects and industry
– Begin discussions with international partners
– New NASA and industry partners for subsequent demonstrations
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PILOT Field Test Hardware

Bucket Drum
Excavator (IR&D)

Rotating H2 Reduction
Reactor - 17 kg/batch

Lift System and Auger
Loading

Lander Simulator (IR&D)

Product Processor

Oxygen Liquefier/ Storage (IR&D)

Water Condenser

Salt Extraction Collector
and Second Stage Filter

Hydrogen Storage

Dump Chute

PILOT – Precursor ISRU Lunar Oxygen Testbed
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ROxygen Field Test Hardware

NASA ROxygen H2 Reduction System

Two Fluidized H2 Reduction
Reactors - 10 kg/batch each

Water Electrolysis
Units (2)

Gaseous O2
Storage

Cratos Excavator

Regolith
hopper/auger lift
system (2)

Hydrogen Tank/Separator

Water Tanks (2)

Water Freezer

Regolith reactor exhaustRamp to allow Cratos operations
(or other small vehicle)
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OPTIMA ROxygen & PILOT Tasks

 Demonstrate excavation and material delivery to plant and removal of spent
regolith;
– Increase distance and terrain complexity between plant and excavation site each day

 Demonstrate regolith processing to extract oxygen
– Min. of 4 hrs on one day; nominal 8 hrs per day
– Max. of 8 hrs/day for 5 days

 Demonstrate oxygen separation and storage
– Liquefaction and cryogenic storage
– Moderate pressure gaseous oxygen

 Opportunistic Demos
– Demonstrate alternative oxygen liquefaction and storage
– Hot fire a LO2/LCH4 RCS 25 lbf thruster igniter
– Mossbauer spectrometer on Cratos to measure iron before and after processing

NASA Cryogenic RCS Thruster Testbed
(Planned Add-on)

“Dust to Thrust”


